sQ_1 -DEGREES OF COMPUTABLY ENUMERABLE SETS

Roland Omanadze

E-mail: roland.omanadze@tsu.ge

Department of Mathematics, I.Javakhishvili Tbilisi State University

1, Chavchavdze Ave., 0218 Tbilisi, Georgia

Tennenbaum (see [3, p.159]) defined the notion of *Q*-reducibility on stes of natural numbers as follows: a set *A* is *Q*-redusible to a set *B* (in symbols: $A \leq_Q B$) if there exists a computable function *f* such that for every $x \in \omega$ (where ω denotes the set of natural numbers),

$$x \in A \Leftrightarrow W_{f(x)} \subseteq B.$$

We say in this case that $A \leq_Q B$ via f. If $A \leq_Q B$ via a computable function f and there exists a computable function g such that for all x, y,

$$y \in W_{f(x)} \Rightarrow y \leq g(x),$$

then we say that A is sQ-reducible to B (in symbols: $A \leq_{sQ} B$) via f and g (see [1]). If $A \leq_{sQ} B$

and for all x, y,

$$x \neq y \Rightarrow W_{f(x)} \cap W_{f(y)} = \emptyset_{x}$$

then we say that A is sQ_1 -reducible to B (in symbols: $A \leq_{sQ_1} B$) via f and g.

Our notation and terminology are standard and can be found in [2, 3].

We prove that there exist two computably enumerable (c.e.) sets having no least upper bound on the sQ_1 –reducibility ordering. We show that the c.e. sQ_1 –degree are not dense. We prove that if **a** is a c.e. sQ_1 –degree such that

$$\mathbf{0}_{sQ_1} <_{sQ_1} \mathbf{a} <_{sQ_1} \mathbf{0}'_{sQ_1}$$
,

then there exist infinitely many pairwise sQ -incomparable c.e. sQ -degrees $\{c_i\}_{i \in \omega}$ such that for all i, $a_{sQ_1} <_{sQ_1} c_i <_{sQ_1} \mathbf{0}'_{sQ_1}$.

References

[1] R.Sh.Omanadze, On the upper semilattice of recursively enumerable sQ-degrees, Algebra and Logic , 30, 4 (1993) 265-271.

[2] H.Rogers, Theory of recursive functions and effective computability. McGraw-Hill Book Co., New York, 1967.

[3] R.I.Soare, Recursively Enumerable Sets and Degrees. Springer, 1987.