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Let ¢, <38, <Y <t be given numbers; let W;(Wkl) be the space of absolutely continuous
functions x(¢) e R", tel, =[t,,9] (y(t) eR",tel, = [190,1,‘1]) satisfying the condition
s €L, (JO L)
To each element z =(60,x(-),y("))eZ =1, x Wp1 x W, we assign the functional

J(2) = [ (x50 e+ [ gt (0 50 1)

with the following restrictions
x(ty) = x, (0)=G(0,x(0)), y(1,) =y, 2
where I, =[9,,8,], the scalar function f(¢,x,u) (g(t, v, v)) is continuous on the set/, x R" x R"
(I, xR"™ xR™) and continuously differentiable with respect to argument (x,u)( y,v). Let the m -
dimensional vector-valued function G(%,x) be continuous on the set /; x R", let x, € R"
and y, € R"” be given points.
Definition 1. An element z € Z is said to be admissible if J(z) is finite and the conditions (2) hold.
Denote by Z, the set of admissible elements.
Definition 2. An element z, € Zis said to be optimal if for an arbitrary element Vz e Z, the
inequality
J(z,) < J(2) 3)
holds.
The problem (1)-(3) is called the two stage problem of the calculus of variations and z, is called
its solution. Let n =k =1, f =g and G(¢,x) = x+ a, where a isa given number, then the problem
we will call Razmadze’s problem [1].
Theorem 1. There exists a solution of the problem (1)-(3) if the following conditions hold:
1) theset Z, is non-empty;
2) the functions f(t,x,u) and g(t,y,v) are convex with respect to arguments u and Vv,
respectively. Moreover, f(t,x,0")=g(¢,y,0")=0, where 0" (Om ) is zero of the space R" (Rm );
3) There exist numbers a >0, y >0, f € R and p € R such that the following growth conditions
f(t,x,u)> a’u|p +p.p>1; gt,y,v)=> 7/|v’k +p, k>1 hold

The existence of solution of the classical variational problem was proved in [2] for the first time. The
Theorem 1 we will call Tonelli’s type existence theorem.
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The existence of solution of the classical  variational problem was proved in [2] for the first time. The  Theorem 1 we will call Tonelli’s  type existence theorem.
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