On the existence of solution of the two stage variational problem

Tamaz Tadumadze

e-mail: tamaz.tadumadze@tsu.ge
Department of Mathematics, Iv. Javakhishvili Tbilisi State University, 13 University St., 0186 Tbilisi, Georgia

Let $t_{0}<\vartheta_{0}<\vartheta_{1}<t_{1}$ be given numbers; let $W_{p}^{1}\left(W_{k}^{1}\right)$ be the space of absolutely continuous functions $x(t) \in R^{n}, t \in I_{1}=\left[t_{0}, \vartheta_{1}\right] \quad\left(y(t) \in R^{m}, t \in I_{2}=\left[\vartheta_{0}, t_{1}\right]\right)$ satisfying the condition $\dot{x}(\cdot) \in L_{p}\left(\dot{y}(\cdot) \in L_{k}\right)$.
To each element $z=(\theta, x(\cdot), y(\cdot)) \in Z=I_{3} \times W_{p}^{1} \times W_{k}^{1}$ we assign the functional

$$
\begin{equation*}
J(z)=\int_{t_{0}}^{\theta} f(t, x(t), \dot{x}(t)) d t+\int_{\theta}^{t_{1}} g(t, y(t), \dot{y}(t)) d t \tag{1}
\end{equation*}
$$

with the following restrictions

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} y(\theta)=G(\theta, x(\theta)), y\left(t_{1}\right)=y_{1}, \tag{2}
\end{equation*}
$$

where $I_{3}=\left[\vartheta_{1}, \vartheta_{2}\right]$, the scalar function $f(t, x, u)(g(t, y, v))$ is continuous on the set $I_{1} \times R^{n} \times R^{n}$ $\left(I_{2} \times R^{m} \times R^{m}\right)$ and continuously differentiable with respect to argument $(x, u)(y, v)$. Let the m dimensional vector-valued function $G(t, x)$ be continuous on the set $I_{3} \times R^{n}$, let $x_{0} \in R^{n}$ and $y_{1} \in R^{m}$ be given points.
Definition 1. An element $z \in Z$ is said to be admissible if $J(z)$ is finite and the conditions (2) hold. Denote by Z_{0} the set of admissible elements.
Definition 2. An element $z_{0} \in Z_{0}$ is said to be optimal if for an arbitrary element $\forall z \in Z_{0}$ the inequality

$$
\begin{equation*}
J\left(z_{0}\right) \leq J(z) \tag{3}
\end{equation*}
$$

holds.
The problem (1)-(3) is called the two stage problem of the calculus of variations and z_{0} is called its solution. Let $n=k=1, f=g$ and $G(t, x)=x+a$, where a is a given number, then the problem we will call Razmadze's problem [1].
Theorem 1. There exists a solution of the problem (1)-(3) if the following conditions hold:

1) the set Z_{0} is non-empty;
2) the functions $f(t, x, u)$ and $g(t, y, v)$ are convex with respect to arguments u and v, respectively. Moreover, $f\left(t, x, 0^{n}\right)=g\left(t, y, 0^{m}\right)=0$, where $0^{n}\left(0^{m}\right)$ is zero of the space $R^{n}\left(R^{m}\right)$;
3) There exist numbers $\alpha>0, \gamma>0, \beta \in R$ and $\rho \in R$ such that the following growth conditions $f(t, x, u) \geq \alpha|u|^{p}+\beta, p>1 ; g(t, y, v) \geq \gamma|v|^{k}+\rho, k>1$ hold.
The existence of solution of the classical variational problem was proved in [2] for the first time. The Theorem 1 we will call Tonelli's type existence theorem.

References

[1] Razmadze A. M. Sur les solutions discontinues dans le calcul des variations. Math. Ann.,94, (1925), 1-52.
[2] Tonelli L. Sur la semi continuity des integrales doubles du calcul des variations. Acta Math., 53, (1929), 325-346.

