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where ],[ 213 I , the scalar function  ),,(),,( vytguxtf is continuous on the set nn RRI 1

)( 2
mm RRI  and continuously differentiable with respect to argument  vyux ,),( . Let the m -

dimensional vector-valued function ),( xtG be continuous on the set ,3
nRI  let nRx 0

and mRy 1 be given points.
Definition 1. An element  Zz is said to be  admissible if )(zJ is  finite and the conditions (2) hold. 
  Denote by 0Z the set of admissible elements.
Definition 2. An element  00 Zz  is said to be optimal if  for an arbitrary  element 0Zz the 
inequality 
                                                                     )()( 0 zJzJ                                                               (3)
holds.
  The problem (1)-(3) is called the two stage problem of the calculus  of variations and  0z is called
its  solution. Let gfkn  ,1 and axxtG ),( , where a is a given number, then  the problem 
we will call Razmadze’s problem [1].
Theorem 1. There exists a solution of the problem  (1)-(3) if the following conditions hold:

1) the set  0Z is non-empty;
2) the functions ),,( uxtf and ),,( vytg are convex with respect to arguments  u and v , 

respectively. Moreover, 0)0,,()0,,(  mn ytgxtf , where  mn 00 is zero of the space  mn RR ;
3) There exist numbers R  ,0,0 and R such that the following growth conditions

         p
uuxtf ),,( , ;1p   k

vvytg ),,( , 1k hold.
The existence of solution of the classical variational problem was proved in [2] for the first time. The  
Theorem 1 we will call Tonelli’s  type existence theorem.
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The existence of solution of the classical  variational problem was proved in [2] for the first time. The  Theorem 1 we will call Tonelli’s  type existence theorem.
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