On an optimization problem of the delay parameter containing in controls

Medea Iordanishvili

e-mail: medea. iordanishvili@tsu.ge

Department of Computer Sciences, Iv. Javakhishvili Tbilisi State University, 13 University St., 0186

Tbilisi, Georgia

Let $t_1 > t_0$ and $\theta_2 > \theta_1 > 0$ be given numbers; let $O \subset \mathbb{R}^n$ be an open set and let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^{r_{21}}$ be convex and compact sets. Furthermore, let $x_0 \in O$ be fixed point and let the n-dimensional function $f(t, x, u, u_1, v, v_1)$ be continuous on $[t_0, t_1] \times O \times U^2 \times V^2$ and continuously differentiable with respect to (x, u, u_1, v, v_1) . Let Ω_1 be a set of piecewise-continuous control functions $u(t) \in U$, $t \in I = [t_0 - \theta_2, t_1]$ and Ω_2 be a set of absolutly continuous control functions $v(t) \in V$, $t \in I$. To each element $w = (\theta, u(\cdot), v(\cdot)) \in W = [\theta_1, \theta_2] \times \Omega_1 \times \Omega_2$ we assign the ordinary differential equation

$$\dot{x} = f(t, x, u(t), u(t-h), v(t), v(t-\theta)), \ t \in [t_0, t_1]$$
(1)

with the initial condition

$$x(t_0) = x_0$$
, (2)

where $h \in [\theta_1, \theta_2]$ is a fixed delay parameter.

Definition 1. Let $w \in W$, a function $x(t) = x(t; w) \in O, t \in [t_0, t_1]$, is called a solution of equation (1) with the initial condition (2) or a solution corresponding to the element w if it satisfies condition (2) and is absolutely continuous and satisfies equation (1) almost everywher.

Let the scalar-valued functions $\mathcal{G}^i(\theta, x), i = 0, l$, be continuously differentiable on $[\theta_1, \theta_2] \times O$. **Definition 2.** An element $w \in W$ is said to be admissible if

$$\Theta^{i}(\theta, x(t_{1}; w)) = 0, i = 1, l.$$
 (3)

Denote by W_0 the set of admissible elements.

Definition 3. An element $w_0 = (\theta_0, u_0(\cdot), v_0(\cdot)) \in W_0$ is said to be optimal if for an arbitrary element $w \in W_0$ we have

$$\mathcal{G}^{0}(\theta_{0}, x_{0}(t_{1})) \leq \mathcal{G}^{0}(\theta, x(t_{1})), \ x_{0}(t) = x(t; w_{0}).$$
(4)

For the delay optimization problem (1)-(4) the necessary conditions of optimality are obtained on the basis of variation formulas [1] and by the scheme given in [2].

References

Iordanishvili M. Local variation formulas of solutions for the nonlinear controlled differential equation with the discontinuous initial condition and with delay in the phase coordinates and controls. *Transactions of A. Razmadze Mathematical Institute*, **173** (2) (2019), 10-16.
 Tadumadze T. Variation formulas of solutions for functional differential equations with several constant delays and their applications in optimal control problems. *Mem. Differential Equations Math. Phys.*, **70** (2017), 7-97.