Inner product spaces and minimal values of functionals

July 17, 2020

Abstract

We consider a real function which depends on the distances between a variable point and the points of a finite subset A of a linear normed space X. We show that X is an inner product space if this function attains its local minimum on a barycenter of points of A with well-chosen weights. Our result generalizes classical results about characterization of inner product spaces and answers a question of R. Durier, which was posed in his article [J. Math. Anal. Appl. 207 (1997) 220–239]. 2004 Elsevier Inc. All rights reserved.

Let X be a normed linear space and let S(X) be a set of points of norm one. Before we formulate our theorem let us introduce the following:

Definition. Let *X* be a real linear space and *f* be a functional on *X*. We say that $x_0 \in X$ is a point of a weak local minimum of the functional *f*, if for any $y \in X$, there exists > 0 such that $f(x_0 + ty) \ge f(x_0)$ for all $t, |t| < \varepsilon$.

Theorem. Let X be a real normed space, dim $X \ge 2$ and n be a natural number; $n \ge 3$. Let also $\phi_i : \mathbb{R}_+ \to \mathbb{R}_+, 1 \le i \le n$ and $\gamma : \mathbb{R}_+^n \to \mathbb{R}_+$ are some given functions. Consider the statements:

- (i) X is an inner product space.
- (ii) For every subset $\{a_1, a_2, ..., a_n\}$ included in S(X) and such that $\sum_{i=1}^{n-1} a_i \neq 0$ and $\sum_{i=1}^{n-1} a_i + \|\sum_{i=1}^{n-1} a_i\|a_n = 0, 0$ is the point of a week local minimum of the functional

$$F(x) = \sum_{i=1}^{n-1} \varphi_i (\|x - a_i\|) + \left\|\sum_{i=1}^{n-1} a_i\right\| \varphi_n (\|x - a_n\|).$$

(iii) For every subset $\{a_1, a_2, ..., a_n\}$ included in S(X), for every positive n and every family of real numbers $(\omega_1, \omega_2, ..., \omega_n)$ such that $\sum_{i=n}^n \omega_i a_i = 0$, 0 is the point of a weak local minimum of the functional

$$F(x) = \sum_{i=1}^{n} \omega_i \varphi_i \big(\|x - a_i\| \big).$$

(iv) For every subset $\{a_1, a_2, ..., a_n\}$ included in $X \setminus \{0\}$ such that $\sum_{i=1}^{n-1} a_i = 0$, 0 is the point of weak local minimum of the functional

$$F(x) = \sum_{i=1}^{n} \|a_i\|^2 \varphi\left(\frac{\|x - a_n\|}{\|a_i\|}\right)$$

(v) for every subset $\{a_1, a_2, ... a_n\}$ from S(X), containing at least one non-collinear vectors and such that $\sum_{i=1}^{n-1} a_i \neq 0$, $\sum_{i=1}^{n-1} a_i \| \sum_{i=1}^{n-1} a_i \| a_n = 0$, 0 is the point of a weak local minimum of the functional

$$F(x) = \gamma \left(\varphi_1 \big(\|x - a_1\| \big), ..., \varphi_{n-1} \big(\|x - a_{n-1}\| \big), \left\| \sum_{i=1}^{n-1} a_i \right\| \varphi \big(\|x_n - a_n\| \big) \right)$$

(vi) for every subset $\{a_1, a_2, ..., a_n\}$ from S(X), containing at least one pair of non-collinear vectors and $a_n \in X \setminus \{0\}$, such that $\sum_{i=1}^n a_i = 0$, 0 is the point of weak local minimum of functional

$$F(x) = \gamma \left(\varphi_1 \left(\|x - a_1\| \right), ..., \varphi_{n-1} \left(\|x - a_{n-1}\| \right), \|a_n\|^2 \varphi_n \left(\frac{\|x_n - a_n\|}{\|a_n\|} \right) \right)$$

The following implications are valid:

- (i) If $\phi_i, 1 \leq i \leq n$, is the function defined on the neighborhood U of the point 1 in \mathbb{R} such that $\varphi'_i(u)$ is continuous, $\varphi'_1(1) = \ldots = \varphi'_n(u) \neq 0$ and $\varphi''_i(1) > 0$, then (i) (iv) are equivalent.
- (ii) If γ is the function defined on the neighborhood of a line $T = (\varphi_1(1), ..., \varphi_{n-1}(1), t_n \phi_n(1))$, such that it has continuous partial derivatives and $\gamma'_{t_1}(t) = ... = \gamma'_{t_n}(t)$ for all $t \in T$ and φ_i is a function defined on a neighborhood of a point 1, $\varphi'_i(u)$, $1 \le i \le n$, is continuous and $\varphi'_1(1) = ... = \varphi'_n(u) \ne 0$, then we have $(v) \rightarrow (i), (vi) \rightarrow (i)$.

In [1, Theorem 5.3] the equivalence of statements (i)-(iv) was proved for the case when $\varphi_i(t) = t^{\alpha}$, $\alpha \geq 1$. One of the question from [1], was to find monotone *n*-norms (i.e., norm on \mathbb{R}^n such that if $0 \leq u_i \leq v_i$ ($1 \leq i \leq n$) than for $u = (u_1, ..., u_n)$, $v = (v_1, ..., v_n)$ we have $\gamma(u) \leq \gamma(v)$) different from l_{α} norms for which results similar to those given in the above mentioned Theorem 5.3 are true.

Proof. We are going to show that $(v) \rightarrow (i)$, $(vi) \rightarrow (i)$, $(i) \rightarrow (iv)$, $(i) \rightarrow (iii)$. After this the equivalence of (i)-(iv) in the theorem will follow since it is clear that (iii) and (iv) imply (ii) and (ii) implies (v) for the function $\gamma(u) = \sum_i u(i)$.

 $(v) \rightarrow (i)$ According to the well-known Von Neumann–Jordan criterion it is enough to prove this implication for the case dim X = 2. Thus we should prove that the surface S(X) of the unit ball B(X) in $(R2, \|\cdot\|)$ is an ellipse. The proof is based on the following elementary result from [2] and we give it here for completeness.

Lemma 1. There exists an ellipse which is inside the unit ball B(X) and touches S(X) at four points at least.

Proof. It is easy to show that an ellipse of maximum area inside B(X) touches S(X) at four points at least (this argument seems to be used frequently, see, e.g., [3, p. 322]).

Lemma 2. Let φ and ψ be two functions defined on the interval $I = (a - \varepsilon, a + \varepsilon), \varepsilon > 0$, such that $\psi(x) \ge \varphi(x), \in I, \psi(a) = \varphi(a)$ and the derivatives $\varphi'(a), \psi'_{-}(a), \psi'_{+}(a)$ exist. If $\psi'_{-}(a) \ge \psi'_{+}(a)$, then $\psi'_{-}(a) = \psi'_{+}(a) = \varphi'(a)$.

Proof.

$$\varphi'(a) = \lim_{u \to 0, u > 0} \frac{\varphi'(a) - \varphi'(a - u)}{u} \ge \lim_{u \to 0, u > 0} \frac{\psi'(a) - \psi'(a - u)}{u}$$
$$= \psi - t'(a) \ge \psi + t'(a) = \lim_{u \to 0, u > 0} \frac{\psi'(a + u) - \psi'(a)}{u} \ge \lim_{u \to 0, u > 0} \frac{\varphi'(a + u) - \varphi'(a)}{u}$$

which proves the lemma.

Let E be the ellipse from Lemma 1 and A' and B' be the points of the intersection $S(X) \cap E$, $A' \neq B'$, and $A' \neq -B'$. Apply an affine transformation L that carries E into the unit circle of $(\mathbb{R}^2, \|\cdot\|_2)$ $(\|\cdot\|_2)$ being the usual l_2 norm). Let XOY be an orthogonal Cartesian system on \mathbb{R}^2 such that L(A') = (-1, 0). Denote (-1, 0) by A and L(B') by $B = (b_1, b_2)$. Obviously, $b_1^2 + b_2^2 = 1$ and $b_2 \neq 0$.

Let $a_1 = \ldots = a_{n-2} = A$, $a_{n-1} = B$, $a'_n = -((n-2)a_1 + a_{n-1})$, $a_n = \frac{a'_n}{\|a'_n\|}$, and let M_{ε} be the point $M_{\varepsilon} = (a\varepsilon, \varepsilon)$, $a = \frac{x}{y}$, where $a_n = (x, y)$. From $b_2 \neq 0$ follows that $y \neq 0$. Consider the vectors

$$a_1 - M_{\varepsilon} = (-1 - a\varepsilon, \varepsilon), \quad a_{n-1} - M_{\varepsilon} = (b_1 - a\varepsilon, b_2 - \varepsilon)$$

 $a_n - M_{\varepsilon} = (x - a\varepsilon, y - \varepsilon)$

Since x = ay we get

$$a_n - M_{\varepsilon} = (ay - a\varepsilon, y - \varepsilon) = \frac{y - \varepsilon}{y}(x, y)$$

and hence $||a_n - M_{\varepsilon}|| = 1 - \frac{\varepsilon}{y}$. We are going to estimate the norms of the two other vectors. By Lemma 2 there exists the tangents to L(S(X)) at the points A and B and they are expressed by the equations x = -1, $y = -b(x - b_1) + b_2$, respectively, where $b = \frac{b_1}{b_2}$. We may assume that L(S(X)) coincides to those tangents at the neighborhood of the points A and B, so we have the following expressions:

$$\|a_1 - M_{\varepsilon}\| = 1 + a\varepsilon + o(\varepsilon)$$

and

$$||a_{n-1} - M_{\varepsilon}|| = 1 - (b_2 + ab_1)\varepsilon + o(\varepsilon)$$

By the property of the functional F, there exists $\varepsilon > 0$ such that for all ε , $|\varepsilon| < \varepsilon$. For such ε we have

$$F(x) = \gamma \left(\varphi_1 \left(\|M_{\varepsilon} - a_1\|, ..., \varphi_{n-1} \left(\|M_{\varepsilon} - a_{n-1}\|, \|a'_n\|\varphi_n \left(\|M_{\varepsilon} - a_n\| \right) \right) \right)$$
$$= \gamma \left(\varphi_1 \left(1 + a\varepsilon + o(\varepsilon) \right), ..., \varphi_{n-2} \left(1 + a\varepsilon + o(\varepsilon) \right), \\\varphi_{n-1} \left(1 - (b_2 + ab_1) + o(\varepsilon) \right), \|a'_n\|\varphi_n \left(1 - \frac{\varepsilon}{y} \right) \right).$$

Using Taylor decomposition for φ_i , i = 1, ..., n, and γ , we obtain

$$F(M_{\varepsilon}) = \gamma \left(\varphi_1(1) + \varphi_1'(1)a\varepsilon + o(\varepsilon), ..., \varphi_{n-1}(1) - \varphi_{n-1}'(1)(b_2 + ab_1)\varepsilon + o(\varepsilon), \\ \|a_n'\| \left(\varphi_n(1) - \varphi_n'(1)\frac{\varepsilon}{y} + o(\varepsilon) \right).$$

Introduce the notation $\overline{t} = (\varphi_1(1), ..., \varphi_{n-1}(1), ||a'_n||\varphi_n(1))$. Since $\gamma'_{t_1}(\overline{t}) = ... = \gamma'_{t_n}(\overline{t})$ and $\varphi'_1(1) = ... = \varphi'_n(1)$ we can rewrite the last equation as follows:

$$F(M_{\varepsilon}) = \gamma(\overline{t}) + \gamma_{t_1}'(\overline{t})\varphi_1'(1)\left((n-2) - (b_2 - ab_1) - \frac{\|a_n'\|}{y}\right)\varepsilon + o(\varepsilon)$$

$$\geq \gamma(\bar{t}) = F(0)$$

From this inequality we get

$$\gamma_{t_1}'(\bar{t})\varphi_n'(1)\left((n-2)a - (b_2 + ab_1) - \frac{\|a_n'\|}{y}\right) = 0$$

and since $\gamma'_{t_1}(\bar{t})\varphi'_n(1) \neq 0$ we obtain

$$y = \frac{\|a'_n\|}{(n-2)a - b_2 - ab_1}.$$
(1)

using relation $x^2 = a^2 y^2$, $\frac{-(n-2-b_1)}{b_2} = a$ and $||a'_n|| = \frac{-b_2}{y}$, we get

$$x^{2} + y^{2} = (1 + a^{2})y^{2} = \frac{(1 + a^{2})b_{2}}{b_{2} + ab_{1} - (n - 2)a} = \frac{1 + a^{2}}{1 + a^{2}} = 1$$

Denote by arc(A, B) the part of the circle L(E) which is inside smaller angle generated by the vectors A and B. As we have just proved, if L(S(X)) and L(E) coincide at two points A and B they coincide at one more point $C \in arc(A, B)$. Continuing this process, we see that L(S(X)) and arc(A, B) coincide on a dense set of points. Hence $arc(A, B) \subset L(S(X))$ as well. The proof of implication is complete.

(vi) \rightarrow (i) Let A and B be the vectors we have just considered above and let $a_1 = \dots = a_{n-2} = A$, $a_{n-1} = B$, $a_n = -((n-2)a_1 + a_{n-1})$,

$$M_{\varepsilon} = \left(a\varepsilon, \varepsilon\right), a = \frac{x'}{y'}$$

where $a_n = (x', y')$. Since x' = ay' we get

$$a_n - M_{\varepsilon} = (ay' - a\varepsilon, y' - \varepsilon) = \frac{y' - \varepsilon}{y'} (x', y')$$

and hence $\frac{\|a_n - M_{\varepsilon}\|}{\|a_n\|} = 1 - \frac{\varepsilon}{y'}$. It is clear that the same expressions are true for $\|a_1 - M_{\varepsilon}\|$ and $\|a_{n-1} - M_{\varepsilon}\|$, so as in the previous case we can derive the equality

$$(n-2)a - (b_2 - ab_1) - \frac{\|a_n\|^2}{y'} = 0.$$

Denote now by (x, y) the vector $\frac{a_n}{\|a_n\|}$, i.e., we have $\frac{y'}{y} = \|a_n\|$. This gives us the equality (1) and hence the relation $x^2 + y^2 = 1$. Using the same arguments as for the previous case we obtain that L(S(X)) is a circle. The proof $(\text{vi}) \rightarrow (\text{i})$ is complete.

(i) \rightarrow (vi) let $x \in X$, $||x|| = \varepsilon$. It is clear that

$$\frac{\|x - a_i\|}{\|a_i\|} = \sqrt{1 - \frac{2(x, a_i)}{\|a_i\|^2} + \frac{\varepsilon^2}{\|a_i\|^2}}.$$

Denoting $\frac{(2(x,a_i)-\varepsilon^2)}{\|a_i\|^2}$ by δ_i and using the formula

$$\sqrt{1-\delta_i} = 1 - \frac{1}{2}\delta_i - \frac{1}{8}\delta_i^2 + o(\delta_i^2).$$

we get

$$\sum_{i=n}^{n} \|a_i\|^2 \varphi_i \left(\frac{\|x-a_i\|}{\|a_i\|}\right) = \sum_{i=n}^{n} \|a_i\|^2 \varphi_i \left(1 - \frac{1}{2}\delta_i - \frac{1}{8}\delta_i^2 + o(\delta_i^2)\right).$$

Let

$$\delta_i' = -\frac{1}{2}\delta_i - \frac{1}{8}\delta_i^2 + o(\delta_i^2).$$

Since $\varphi_i''\bigl(t\bigr)$ is continuous in the neighborhood of the point 1 we have

$$\sum_{i=n}^{n} \|a_i\|^2 \left(\varphi_i(1) + \varphi_i'(1)\delta_i' + \frac{1}{2}\varphi_i''(1)\delta_i'^2 + o(\delta_i'^2) \right).$$

The first term of this expression is F(0). Consider the second one:

$$\begin{split} \sum_{i=n}^{n} \|a_i\|^2 \varphi_i' \delta_i' \\ &= \varphi_i' \sum_{i=n}^{n} \|a_i\|^2 \left(\frac{\left(-2(x,a_i) - \varepsilon^2\right)}{2\|a_i\|^2} - \frac{1}{8} \left(\frac{2(x,a_i) - \varepsilon^2 \varepsilon^2}{\|a_i\|^2} + o(\varepsilon^2) \right) \right) \\ &\qquad \varphi_i' \left(- \left(x, \sum_{i=1}^{n} a_i\right) + \frac{n}{2} \varepsilon^2 - \frac{1}{2} \sum_{i=1}^{n} \frac{(x,a_i)^2}{\|a\|^2} + o(\varepsilon^2) \right). \end{split}$$

For the third term we have

$$\frac{1}{2}\sum_{i=n}^{n} \|a_i\|^2 \varphi_i''(1) \delta_i'^2 = \frac{1}{2}\sum_{i=n}^{n} \varphi_i''(1) \frac{(x,a_i)^2}{\|a_i\|^2} + o(\varepsilon^2)$$

Since $\sum_{i=n}^n a_i = 0,$ it is easy to obtain that

$$F(x) = F(0) + \frac{n}{2}\varepsilon^{2}\varphi_{i}'(1) + \frac{1}{2}\sum_{i=1}^{n}\frac{(x,a_{i})^{2}}{\|a_{i}\|^{2}}\left(\varphi_{i}''(1) - \varphi_{1}'(1)\right) + o(\varepsilon^{2})$$
$$\geq F(0) + \frac{1}{2}c\varepsilon^{2} + o(\varepsilon^{2}),$$

where $c = \min_{1 \le i \le n} (\varphi_i''(1), \varphi_1'(1)) > 0$. The proof of this implication is complete. (iii) \rightarrow (iii) For $||x|| = \varepsilon$ we have $||x - a_i|| = \sqrt{1 - 2(x, a_i) + \varepsilon^2}$. Denoting $2(x, a_i) - \varepsilon^2$ by δ_i we get

$$\sum_{i=1}^{n} \omega_i \varphi_i \left(\|x - a_i\| \right) = \sum_{i=1}^{n} \omega_i \varphi_i \left(1 - \frac{1}{2} \delta_i - \frac{1}{8} \delta_i^2 + o\left(\delta_i^2\right) \right).$$

As in the previous case we can derive that

$$F(x) = F(0) + \frac{1}{2} \sum_{i=1}^{n} \omega_i \Big(\varepsilon^2 \varphi_i'(1) + (x, a_i)^2 \big(\varphi_i''(1) - \varphi_i'(1) \big) \Big) + o(\varepsilon^2)$$

$$\geq F(0) + \frac{1}{2}c\varepsilon^2 + o(\varepsilon^2).$$

The proof of the theorem is complete.

Now it is easy to find monotone norms different from l_{α} norms for which the coincidence of optimal location and barycenters of a finite set implies that X is an inner product space. For example, let us consider the following norm γ on \mathbb{R}^n :

$$\gamma(u_1, ..., u_n) = \sqrt{(n-1)(u_1^2 + ... + u_n^2) + |u_n|}$$

and let $\varphi_t(t) = t \ 1 \le i \le n$. We now have

Proposition. The following statements are equivalent:

- (i) X is an inner-product space.
- (ii) For every subset $\{a_1, a_2, ..., a_n\}$ from S(X) containing at least on pair of non-collinear points and such that $\sum_{i=1}^{n-1} a_i \neq 0$, $\sum_{i=1}^{n-1} a_i + \|\sum_{i=1}^{n-1} a_i\|a_n = 0$, 0 is the point of a weak local minimum of the functional

$$F(x) = \sqrt{(n-1)(\|x-a_1\|^2 + \dots + \|x-a_{n-1}\|^2)} + \left\|\sum_{i=1}^{n-1} a_i\right\| \|x-a_n\|^2$$

(iii) for every subset $\{a_1, a_2, ..., a_n\}$ from S(X), containing at least one pair of non-collinear vectors and $a_n \in X \setminus \{0\}$, such that $\sum_{i=1}^n a_i = 0$, 0 is the point of weak local minimum of functional and $\sum_{i=1}^{n-1} a_i + \|\sum_{i=1}^{n-1} a_i\|a_n = 0$, 0 is the point of a week local minimum of the functional

$$F(x) = \sqrt{(n-1)(\|x-a_1\|^2 + \dots + \|x-a_{n-1}\|^2)} + \|a_n\|\|x-a_n\|.$$

Proof. It is obvious that gamma and for all $u = (1, ..., 1, u_n)$, $u_n > 0$, $\gamma'_{u_1}(u) = ... = \gamma'_{u_1}(u) = 1$ i.e., conditions of (v) and (vi) from the previous theorem hold and we obtain (iii) \rightarrow (i), (ii) \rightarrow (i). Now we will prove that (i) \rightarrow (ii). Let $x \in X$, $||x|| = \varepsilon$. It is clear that $F(0) = n - 1 + ||\sum_{i=1}^{n-1} a_i||$ and

$$F(x) = (n-1)\sqrt{1 - \left(\frac{2}{n-1}\left(x, \sum_{i=1}^{n-1} a_i\right) - \varepsilon^2\right)} + \|\sum_{i=1}^{n-1} a_i\|\sqrt{1 - \left(2(x, a_n) - \varepsilon^2\right)}$$

Using formula

$$1-\delta=1-\frac{1}{2}\delta-\frac{1}{8}\delta^2+o(\varepsilon^2),$$

we get,

$$F(X) = (n-1)\left(1 - \frac{1}{2}\left(\frac{2}{n-1}\left(x,\sum_{i=1}^{n-1}a_i\right) - \varepsilon^2\right) - \frac{1}{8}\left(\frac{2}{n-1}\left(x,\sum_{i=1}^{n-1}a_i\right) - \varepsilon^2\right)^2\right) + \left\|\sum_{i=1}^{n-1}a_i\right\| \left(1 - \frac{1}{2}\left(2(x,a_n) - \varepsilon^2\right) - \frac{1}{8}\left(2(x,a_n) - \varepsilon^2\right)^2\right) + o(\varepsilon^2).$$

Using condition $\sum_{i=1}^{n-1} a_i + \|\sum_{i=1}^{n-1} a_i\|a_n = 0$, we obtain

$$F(x) = F(0) + \frac{1}{2}(n-1)\varepsilon^2 - \frac{1}{2(n-1)}\left(x, \sum_{i=1}^{n-1} a_i\right)^2 + \left(\frac{1}{2}\varepsilon^2 - \frac{1}{2}(x, a_n)^2\right) \left\|\sum_{i=1}^{n-1} a_i\right\| + o(\varepsilon^2)$$

Since the set $\{a_1, ... a_{n-1}\}$ contains at least one pair of non-colinnear points there exists c < 1 such that $\|\sum_{i=1}^{n-1} a_i\| = c(n-1)$. This gives us the following inequality:

$$\left(x, \sum_{i=1}^{n-1} a_i\right)^2 < \varepsilon^2 (n-1)^2 c^2$$

and we get

$$F(x) \ge F(0) + \frac{1}{2}\varepsilon^2(n-1)(1-c^2) + o(\varepsilon^2)$$

we can rewrite this as follows:

$$\frac{F(x) - F(0)}{\varepsilon^2} \ge \frac{1}{2}(n-1)(1-c^2) + \frac{o(\varepsilon^2)}{\varepsilon^2}$$

i.e., we obtain that 0 is the point of a local minimum and hence the weak local minimum of the functional F(x). The proof of this implication is complete. Implication (i) \rightarrow (iii) can be proved similarly. The proof of the proposition is complete.

References.

- [1] R. Durier, Optimal location and inner products, J.Math. Anal. Appl. 207 (1997) 220 239
- [2] G. Chelidze, On a characterization of inner-product spaces, Georgian Math, J. 8 (2001) 231 -236

[3] M. Day, Some characterization of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947) 320 -327