Inner product spaces and minimal values of functionals

July 17, 2020

Abstract

We consider a real function which depends on the distances between a variable point and the points of a finite subset A of a linear normed space X. We show that X is an inner product space if this function attains its local minimum on a barycenter of points of A with well-chosen weights. Our result generalizes classical results about characterization of inner product spaces and answers a question of R. Durier, which was posed in his article [J. Math. Anal. Appl. 207 (1997) 220-239]. 2004 Elsevier Inc. All rights reserved.

Let X be a normed linear space and let $S(X)$ be a set of points of norm one. Before we formulate our theorem let us introduce the following:

Definition. Let X be a real linear space and f be a functional on X . We say that $x_{0} \in X$ is a point of a weak local minimum of the functional f, if for any $y \in X$, there exists >0 such that $f\left(x_{0}+t y\right) \geq f\left(x_{0}\right)$ for all $t,|t|<\varepsilon$.

Theorem. Let X be a real normed space, $\operatorname{dim} X \geq 2$ and n be a natural number; $n \geq 3$. Let also $\phi_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, 1 \leq i \leq n$ and $\gamma: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$are some given functions. Consider the statements:
(i) X is an inner product space.
(ii) For every subset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ included in $S(X)$ and such that $\sum_{i=1}^{n-1} a_{i} \neq 0$ and $\sum_{i=1}^{n-1} a_{i}+$ $\left\|\sum_{i=1}^{n-1} a_{i}\right\| a_{n}=0,0$ is the point of a week local minimum of the functional

$$
F(x)=\sum_{i=1}^{n-1} \varphi_{i}\left(\left\|x-a_{i}\right\|\right)+\left\|\sum_{i=1}^{n-1} a_{i}\right\| \varphi_{n}\left(\left\|x-a_{n}\right\|\right) .
$$

(iii) For every subset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ included in $S(X)$, for every positive n and every family of real numbers $\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ such that $\sum_{i=n}^{n} \omega_{i} a_{i}=0,0$ is the point of a weak local minimum of the functional

$$
F(x)=\sum_{i=1}^{n} \omega_{i} \varphi_{i}\left(\left\|x-a_{i}\right\|\right)
$$

(iv) For every subset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ included in $X \backslash\{0\}$ such that $\sum_{i=1}^{n-1} a_{i}=0,0$ is the point of weak local minimum of the functional

$$
F(x)=\sum_{i=1}^{n}\left\|a_{i}\right\|^{2} \varphi\left(\frac{\left\|x-a_{n}\right\|}{\left\|a_{i}\right\|}\right)
$$

(v) for every subset $\left\{a_{1}, a_{2}, . . a_{n}\right\}$ from $S(X)$, containing at least one non-collinear vectors and such that $\sum_{i=1}^{n-1} a_{i} \neq 0, \sum_{i=1}^{n-1} a_{i}\left\|\sum_{i=1}^{n-1} a_{i}\right\| a_{n}=0,0$ is the point of a weak local minimum of the functional

$$
F(x)=\gamma\left(\varphi_{1}\left(\left\|x-a_{1}\right\|\right), \ldots, \varphi_{n-1}\left(\left\|x-a_{n-1}\right\|\right),\left\|\sum_{i=1}^{n-1} a_{i}\right\| \varphi\left(\left\|x_{n}-a_{n}\right\|\right)\right)
$$

(vi) for every subset $\left\{a_{1}, a_{2}, . . a_{n}\right\}$ from $S(X)$, containing at least one pair of non-collinear vectors and $a_{n} \in X \backslash\{0\}$, such that $\sum_{i=1}^{n} a_{i}=0,0$ is the point of weak local minimum of functional

$$
F(x)=\gamma\left(\varphi_{1}\left(\left\|x-a_{1}\right\|\right), \ldots, \varphi_{n-1}\left(\left\|x-a_{n-1}\right\|\right),\left\|a_{n}\right\|^{2} \varphi_{n}\left(\frac{\left\|x_{n}-a_{n}\right\|}{\left\|a_{n}\right\|}\right)\right)
$$

The following implications are valid:
(i) If $\phi_{i}, 1 \leq i \leq n$, is the function defined on the neighborhood U of the point 1 in \mathbb{R} such that $\varphi_{i}^{\prime}(u)$ is continuous, $\varphi_{1}^{\prime}(1)=\ldots=\varphi_{n}^{\prime}(u) \neq 0$ and $\varphi_{i}^{\prime \prime}(1)>0$, then $(i)-(i v)$ are equivalent.
(ii) If γ is the function defined on the neighborhood of a line $T=\left(\varphi_{1}(1), \ldots, \varphi_{n-1}(1), t_{n} \phi_{n}(1)\right)$, such that it has continuous partial derivatives and $\gamma_{t_{1}}^{\prime}(t)=\ldots=\gamma_{t_{n}}^{\prime}(t)$ for all $t \in T$ and φ_{i} is a function defined on a neighborhood of a point $1, \varphi_{i}^{\prime}(u), 1 \leq i \leq n$, is continuous and $\varphi_{1}^{\prime}(1)=\ldots=\varphi_{n}^{\prime}(u) \neq$ 0 , then we have $(v) \rightarrow(i),(v i) \rightarrow(i)$.

In [1, Theorem 5.3] the equivalence of statements $(i)-(i v)$ was proved for the case when $\varphi_{i}(t)=t^{\alpha}$, $\alpha \geq 1$. One of the question from [1], was to find monotone n-norms (i.e., norm on \mathbb{R}^{n} such that if $0 \leq u_{i} \leq v_{i}(1 \leq i \leq n)$ than for $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right)$ we have $\left.\gamma(u) \leq \gamma(v)\right)$ different from l_{α} norms for which results similar to those given in the above mentioned Theorem 5.3 are true.

Proof. We are going to show that $(\mathrm{v}) \rightarrow(\mathrm{i}),(\mathrm{vi}) \rightarrow(\mathrm{i}),(\mathrm{i}) \rightarrow(\mathrm{iv}),(\mathrm{i}) \rightarrow(\mathrm{iii})$. After this the equivalence of (i) - (iv) in the theorem will follow since it is clear that (iii) and (iv) imply (ii) and (ii) implies (v) for the function $\gamma(u)=\sum_{i} u(i)$.
$(v) \rightarrow(i)$ According to the well-known Von Neumann-Jordan criterion it is enough to prove this implication for the case $\operatorname{dim} X=2$. Thus we should prove that the surface $S(X)$ of the unit ball $B(X)$ in $(R 2,\|\cdot\|)$ is an ellipse. The proof is based on the following elementary result from [2] and we give it here for completeness.

Lemma 1. There exists an ellipse which is inside the unit ball $B(X)$ and touches $S(X)$ at four points at least.

Proof. It is easy to show that an ellipse of maximum area inside $B(X)$ touches $S(X)$ at four points at least (this argument seems to be used frequently, see, e.g., [3, p. 322]).

Lemma 2. Let φ and ψ be two functions defined on the interval $I=(a-\varepsilon, a+\varepsilon), \varepsilon>0$, such that $\psi(x) \geq \varphi(x), \in I, \psi(a)=\varphi(a)$ and the derivatives $\varphi^{\prime}(a), \psi_{-}^{\prime}(a), \psi_{+}^{\prime}(a)$ exist. If $\psi_{-}^{\prime}(a) \geq \psi_{+}^{\prime}(a)$, then $\psi_{-}^{\prime}(a)=\psi_{+}^{\prime}(a)=\varphi^{\prime}(a)$.

Proof.

$$
\begin{gathered}
\varphi^{\prime}(a)=\lim _{u \rightarrow 0, u>0} \frac{\varphi^{\prime}(a)-\varphi^{\prime}(a-u)}{u} \geq \lim _{u \rightarrow 0, u>0} \frac{\psi^{\prime}(a)-\psi^{\prime}(a-u)}{u} \\
=\psi-^{\prime}(a) \geq \psi+^{\prime}(a)=\lim _{u \rightarrow 0, u>0} \frac{\psi^{\prime}(a+u)-\psi^{\prime}(a)}{u} \geq \lim _{u \rightarrow 0, u>0} \frac{\varphi^{\prime}(a+u)-\varphi^{\prime}(a)}{u}
\end{gathered}
$$

which proves the lemma.

Let E be the ellipse from Lemma 1 and A^{\prime} and B^{\prime} be the points of the intersection $S(X) \cap E, A^{\prime} \neq B^{\prime}$, and $A^{\prime} \neq-B^{\prime}$. Apply an affine transformation L that carries E into the unit circle of $\left(\mathrm{R}^{2},\|\cdot\|_{2}\right)\left(\|\cdot\|_{2}\right.$ being the usual l_{2} norm). Let $X O Y$ be an orthogonal Cartesian system on \mathbb{R}^{2} such that $L\left(A^{\prime}\right)=(-1,0)$. Denote $(-1,0)$ by A and $L\left(B^{\prime}\right)$ by $B=\left(b_{1}, b_{2}\right)$. Obviously, $b_{1}^{2}+b_{2}^{2}=1$ and $b_{2} \neq 0$.

Let $a_{1}=\ldots=a_{n-2}=A, a_{n-1}=B, a_{n}^{\prime}=-\left((n-2) a_{1}+a_{n-1}\right), a_{n}=\frac{a_{n}^{\prime}}{\left\|a_{n}^{\prime}\right\|} \|$, and let M_{ε} be the point $M_{\varepsilon}=(a \varepsilon, \varepsilon), a=\frac{x}{y}$, where $a_{n}=(x, y)$. From $b_{2} \neq 0$ follows that $y \neq 0$. Consider the vectors

$$
\begin{gathered}
a_{1}-M_{\varepsilon}=(-1-a \varepsilon, \varepsilon), \quad a_{n-1}-M_{\varepsilon}=\left(b_{1}-a \varepsilon, b_{2}-\varepsilon\right) \\
a_{n}-M_{\varepsilon}=(x-a \varepsilon, y-\varepsilon)
\end{gathered}
$$

Since $x=a y$ we get

$$
a_{n}-M_{\varepsilon}=(a y-a \varepsilon, y-\varepsilon)=\frac{y-\varepsilon}{y}(x, y)
$$

and hence $\left\|a_{n}-M_{\varepsilon}\right\|=1-\frac{\varepsilon}{y}$. We are going to estimate the norms of the two other vectors. By Lemma 2 there exists the tangents to $L(S(X))$ at the points A and B and they are expressed by the equations $x=-1, y=-b\left(x-b_{1}\right)+b_{2}$, respectively, where $b=\frac{b_{1}}{b_{2}}$. We may assume that $L(S(X))$ coincides to those tangents at the neighborhood of the points A and B, so we have the following expressions:

$$
\left\|a_{1}-M_{\varepsilon}\right\|=1+a \varepsilon+o(\varepsilon)
$$

and

$$
\left\|a_{n-1}-M_{\varepsilon}\right\|=1-\left(b_{2}+a b_{1}\right) \varepsilon+o(\varepsilon)
$$

By the property of the functional F, there exists $\varepsilon>0$ such that for all $\varepsilon,|\varepsilon|<\varepsilon$. For such ε we have

$$
\begin{aligned}
F(x)=\gamma & \left(\varphi _ { 1 } \left(\left\|M_{\varepsilon}-a_{1}\right\|, \ldots, \varphi_{n-1}\left(\left\|M_{\varepsilon}-a_{n-1}\right\|,\left\|a_{n}^{\prime}\right\| \varphi_{n}\left(\left\|M_{\varepsilon}-a_{n}\right\|\right)\right)\right.\right. \\
= & \gamma\left(\varphi_{1}(1+a \varepsilon+o(\varepsilon)), \ldots ., \varphi_{n-2}(1+a \varepsilon+o(\varepsilon)),\right. \\
& \left.\varphi_{n-1}\left(1-\left(b_{2}+a b_{1}\right)+o(\varepsilon)\right),\left\|a_{n}^{\prime}\right\| \varphi_{n}\left(1-\frac{\varepsilon}{y}\right)\right) .
\end{aligned}
$$

Using Taylor decomposition for $\varphi_{i}, i=1, \ldots, n$, and γ, we obtain

$$
\begin{gathered}
F\left(M_{\varepsilon}\right)=\gamma\left(\varphi_{1}(1)+\varphi_{1}^{\prime}(1) a \varepsilon+o(\varepsilon), \ldots, \varphi_{n-1}(1)-\varphi_{n-1}^{\prime}(1)\left(b_{2}+a b_{1}\right) \varepsilon+o(\varepsilon)\right. \\
\left\|a_{n}^{\prime}\right\|\left(\varphi_{n}(1)-\varphi_{n}^{\prime}(1) \frac{\varepsilon}{y}+o(\varepsilon)\right)
\end{gathered}
$$

Introduce the notation $\bar{t}=\left(\varphi_{1}(1), \ldots, \varphi_{n-1}(1),\left\|a_{n}^{\prime}\right\| \varphi_{n}(1)\right)$. Since $\gamma_{t_{1}}^{\prime}(\bar{t})=\ldots=\gamma_{t_{n}}^{\prime}(\bar{t})$ and $\varphi_{1}^{\prime}(1)=$ $\ldots=\varphi_{n}^{\prime}(1)$ we can rewrite the last equation as follows:

$$
F\left(M_{\varepsilon}\right)=\gamma(\bar{t})+\gamma_{t_{1}}^{\prime}(\bar{t}) \varphi_{1}^{\prime}(1)\left((n-2)-\left(b_{2}-a b_{1}\right)-\frac{\left\|a_{n}^{\prime}\right\|}{y}\right) \varepsilon+o(\varepsilon)
$$

$$
\geq \gamma(\bar{t})=F(0)
$$

From this inequality we get

$$
\gamma_{t_{1}}^{\prime}(\bar{t}) \varphi_{n}^{\prime}(1)\left((n-2) a-\left(b_{2}+a b_{1}\right)-\frac{\left\|a_{n}^{\prime}\right\|}{y}\right)=0
$$

and since $\gamma_{t_{1}}^{\prime}(\bar{t}) \varphi_{n}^{\prime}(1) \neq 0$ we obtain

$$
\begin{equation*}
y=\frac{\left\|a_{n}^{\prime}\right\|}{(n-2) a-b_{2}-a b_{1}} . \tag{1}
\end{equation*}
$$

using relation $x^{2}=a^{2} y^{2}, \frac{-\left(n-2-b_{1}\right)}{b_{2}}=a$ and $\left\|a_{n}^{\prime}\right\|=\frac{-b_{2}}{y}$, we get

$$
x^{2}+y^{2}=\left(1+a^{2}\right) y^{2}=\frac{\left(1+a^{2}\right) b_{2}}{b_{2}+a b_{1}-(n-2) a}=\frac{1+a^{2}}{1+a^{2}}=1
$$

Denote by $\operatorname{arc}(A, B)$ the part of the circle $L(E)$ which is inside smaller angle generated by the vectors A and B. As we have just proved, if $L(S(X))$ and $L(E)$ coincide at two points A and B they coincide at one more point $C \in \operatorname{arc}(A, B)$. Continuing this process, we see that $L(S(X))$ and $\operatorname{arc}(A, B)$ coincide on a dense set of points. Hence $\operatorname{arc}(A, B) \subset L(S(X))$ as well. The proof of implication is complete.
(vi) \rightarrow (i) Let A and B be the vectors we have just considered above and let $a_{1}=\ldots=a_{n-2}=A$, $a_{n-1}=B, a_{n}=-\left((n-2) a_{1}+a_{n-1}\right)$,

$$
M_{\varepsilon}=(a \varepsilon, \varepsilon), a=\frac{x^{\prime}}{y^{\prime}} .
$$

where $a_{n}=\left(x^{\prime}, y^{\prime}\right)$. Since $x^{\prime}=a y^{\prime}$ we get

$$
a_{n}-M_{\varepsilon}=\left(a y^{\prime}-a \varepsilon, y^{\prime}-\varepsilon\right)=\frac{y^{\prime}-\varepsilon}{y^{\prime}}\left(x^{\prime}, y^{\prime}\right)
$$

and hence $\frac{\left\|a_{n}-M_{\varepsilon}\right\|}{\left\|a_{n}\right\|}=1-\frac{\varepsilon}{y^{\prime}}$. It is clear that the same expressions are true for $\left\|a_{1}-M_{\varepsilon}\right\|$ and $\left\|a_{n-1}-M_{\varepsilon}\right\|$, so as in the previous case we can derive the equality

$$
(n-2) a-\left(b_{2}-a b_{1}\right)-\frac{\left\|a_{n}\right\|^{2}}{y^{\prime}}=0 .
$$

Denote now by (x, y) the vector $\frac{a_{n}}{\left\|a_{n}\right\|}$, i.e., we have $\frac{y^{\prime}}{y}=\left\|a_{n}\right\|$. This gives us the equality (1) and hence the relation $x^{2}+y^{2}=1$. Using the same arguments as for the previous case we obtain that $L(S(X))$ is a circle. The proof (vi) \rightarrow (i) is complete.
(i) \rightarrow (vi) let $x \in X,\|x\|=\varepsilon$. It is clear that

$$
\frac{\left\|x-a_{i}\right\|}{\left\|a_{i}\right\|}=\sqrt{1-\frac{2\left(x, a_{i}\right)}{\left\|a_{i}\right\|^{2}}+\frac{\varepsilon^{2}}{\left\|a_{i}\right\|^{2}}} .
$$

Denoting $\frac{\left(2\left(x, a_{i}\right)-\varepsilon^{2}\right)}{\left\|a_{i}\right\|^{2}}$ by δ_{i} and using the formula

$$
\sqrt{1-\delta_{i}}=1-\frac{1}{2} \delta_{i}-\frac{1}{8} \delta_{i}^{2}+o\left(\delta_{i}^{2}\right) .
$$

we get

$$
\sum_{i=n}^{n}\left\|a_{i}\right\|^{2} \varphi_{i}\left(\frac{\left\|x-a_{i}\right\|}{\left\|a_{i}\right\|}\right)=\sum_{i=n}^{n}\left\|a_{i}\right\|^{2} \varphi_{i}\left(1-\frac{1}{2} \delta_{i}-\frac{1}{8} \delta_{i}^{2}+o\left(\delta_{i}^{2}\right)\right)
$$

Let

$$
\delta_{i}^{\prime}=-\frac{1}{2} \delta_{i}-\frac{1}{8} \delta_{i}^{2}+o\left(\delta_{i}^{2}\right)
$$

Since $\varphi_{i}^{\prime \prime}(t)$ is continuous in the neighborhood of the point 1 we have

$$
\sum_{i=n}^{n}\left\|a_{i}\right\|^{2}\left(\varphi_{i}(1)+\varphi_{i}^{\prime}(1) \delta_{i}^{\prime}+\frac{1}{2} \varphi_{i}^{\prime \prime}(1) \delta_{i}^{\prime 2}+o\left(\delta_{i}^{\prime 2}\right)\right)
$$

The first term of this expression is $F(0)$. Consider the second one:

$$
\begin{gathered}
\sum_{i=n}^{n}\left\|a_{i}\right\|^{2} \varphi_{i}^{\prime} \delta_{i}^{\prime} \\
=\varphi_{i}^{\prime} \sum_{i=n}^{n}\left\|a_{i}\right\|^{2}\left(\frac{\left(-2\left(x, a_{i}\right)-\varepsilon^{2}\right)}{2\left\|a_{i}\right\|^{2}}-\frac{1}{8}\left(\frac{2\left(x, a_{i}\right)-\varepsilon^{2} \varepsilon^{2}}{\left\|a_{i}\right\|^{2}}+o\left(\varepsilon^{2}\right)\right)\right. \\
\varphi_{i}^{\prime}\left(-\left(x, \sum_{i=1}^{n} a_{i}\right)+\frac{n}{2} \varepsilon^{2}-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(x, a_{i}\right)^{2}}{\|a\|^{2}}+o\left(\varepsilon^{2}\right)\right) .
\end{gathered}
$$

For the third term we have

$$
\frac{1}{2} \sum_{i=n}^{n}\left\|a_{i}\right\|^{2} \varphi_{i}^{\prime \prime}(1) \delta_{i}^{\prime 2}=\frac{1}{2} \sum_{i=n}^{n} \varphi_{i}^{\prime \prime}(1) \frac{\left(x, a_{i}\right)^{2}}{\left\|a_{i}\right\|^{2}}+o\left(\varepsilon^{2}\right)
$$

Since $\sum_{i=n}^{n} a_{i}=0$, it is easy to obtain that

$$
\begin{gathered}
F(x)=F(0)+\frac{n}{2} \varepsilon^{2} \varphi_{i}^{\prime}(1)+\frac{1}{2} \sum_{i=1}^{n} \frac{\left(x, a_{i}\right)^{2}}{\left\|a_{i}\right\|^{2}}\left(\varphi_{i}^{\prime \prime}(1)-\varphi_{1}^{\prime}(1)\right)+o\left(\varepsilon^{2}\right) \\
\geq F(0)+\frac{1}{2} c \varepsilon^{2}+o\left(\varepsilon^{2}\right)
\end{gathered}
$$

where $c=\min _{1 \leq i \leq n}\left(\varphi_{i}^{\prime \prime}(1), \varphi_{1}^{\prime}(1)\right)>0$. The proof of this implication is complete.
$($ iii $) \rightarrow($ iii $)$ For $\|x\|=\varepsilon$ we have $\left\|x-a_{i}\right\|=\sqrt{1-2\left(x, a_{i}\right)+\varepsilon^{2}}$. Denoting $2\left(x, a_{i}\right)-\varepsilon^{2}$ by δ_{i} we get

$$
\sum_{i=1}^{n} \omega_{i} \varphi_{i}\left(\left\|x-a_{i}\right\|\right)=\sum_{i=1}^{n} \omega_{i} \varphi_{i}\left(1-\frac{1}{2} \delta_{i}-\frac{1}{8} \delta_{i}^{2}+o\left(\delta_{i}^{2}\right)\right)
$$

As in the previous case we can derive that

$$
F(x)=F(0)+\frac{1}{2} \sum_{i=1}^{n} \omega_{i}\left(\varepsilon^{2} \varphi_{i}^{\prime}(1)+\left(x, a_{i}\right)^{2}\left(\varphi_{i}^{\prime \prime}(1)-\varphi_{i}^{\prime}(1)\right)\right)+o\left(\varepsilon^{2}\right)
$$

$$
\geq F(0)+\frac{1}{2} c \varepsilon^{2}+o\left(\varepsilon^{2}\right) .
$$

The proof of the theorem is complete.
Now it is easy to find monotone norms different from l_{α} norms for which the coincidence of optimal location and barycenters of a finite set implies that X is an inner product space. For example, let us consider the following norm γ on \mathbb{R}^{n} :

$$
\gamma\left(u_{1}, \ldots, u_{n}\right)=\sqrt{(n-1)\left(u_{1}^{2}+\ldots+u_{n}^{2}\right)}+\left|u_{n}\right|
$$

and let $\varphi_{t}(t)=t 1 \leq i \leq n$. We now have

Proposition. The following statements are equivalent:
(i) X is an inner-product space.
(ii) For every subset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ from $S(X)$ containing at least on pair of non-collinear points and such that $\sum_{i=1}^{n-1} a_{i} \neq 0, \sum_{i=1}^{n-1} a_{i}+\left\|\sum_{i=1}^{n-1} a_{i}\right\| a_{n}=0,0$ is the point of a weak local minimum of the functional

$$
F(x)=\sqrt{(n-1)\left(\left\|x-a_{1}\right\|^{2}+\ldots+\left\|x-a_{n-1}\right\|^{2}\right)}+\left\|\sum_{i=1}^{n-1} a_{i}\right\|\left\|x-a_{n}\right\|
$$

(iii) for every subset $\left\{a_{1}, a_{2}, . . a_{n}\right\}$ from $S(X)$, containing at least one pair of non-collinear vectors and $a_{n} \in X \backslash\{0\}$, such that $\sum_{i=1}^{n} a_{i}=0,0$ is the point of weak local minimum of functional and $\sum_{i=1}^{n-1} a_{i}+\left\|\sum_{i=1}^{n-1} a_{i}\right\| a_{n}=0,0$ is the point of a week local minimum of the functional

$$
F(x)=\sqrt{(n-1)\left(\left\|x-a_{1}\right\|^{2}+\ldots+\left\|x-a_{n-1}\right\|^{2}\right)}+\left\|a_{n}\right\|\left\|x-a_{n}\right\| .
$$

Proof. It is obvious that gamma and for all $u=\left(1, \ldots, 1, u_{n}\right), u_{n}>0, \gamma_{u_{1}}^{\prime}(u)=\ldots=\gamma_{u_{1}}^{\prime}(u)=1$ i.e., conditions of (v) and (vi) from the previous theorem hold and we obtain (iii) \rightarrow (i), (ii) \rightarrow (i). Now we will prove that $(\mathrm{i}) \rightarrow\left(\right.$ ii). Let $x \in X,\|x\|=\varepsilon$. It is clear that $F(0)=n-1+\left\|\sum_{i=1}^{n-1} a_{i}\right\|$ and

$$
F(x)=(n-1) \sqrt{1-\left(\frac{2}{n-1}\left(x, \sum_{i=1}^{n-1} a_{i}\right)-\varepsilon^{2}\right)}+\left\|\sum_{i=1}^{n-1} a_{i}\right\| \sqrt{1-\left(2\left(x, a_{n}\right)-\varepsilon^{2}\right)}
$$

Using formula

$$
1-\delta=1-\frac{1}{2} \delta-\frac{1}{8} \delta^{2}+o\left(\varepsilon^{2}\right),
$$

we get,

$$
\begin{aligned}
F(X)= & (n-1)\left(1-\frac{1}{2}\left(\frac{2}{n-1}\left(x, \sum_{i=1}^{n-1} a_{i}\right)-\varepsilon^{2}\right)-\frac{1}{8}\left(\frac{2}{n-1}\left(x, \sum_{i=1}^{n-1} a_{i}\right)-\varepsilon^{2}\right)^{2}\right) \\
& +\left\|\sum_{i=1}^{n-1} a_{i}\right\|\left(1-\frac{1}{2}\left(2\left(x, a_{n}\right)-\varepsilon^{2}\right)-\frac{1}{8}\left(2\left(x, a_{n}\right)-\varepsilon^{2}\right)^{2}\right)+o\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Using condition $\sum_{i=1}^{n-1} a_{i}+\left\|\sum_{i=1}^{n-1} a_{i}\right\| a_{n}=0$, we obtain

$$
\begin{aligned}
F(x)= & F(0)+\frac{1}{2}(n-1) \varepsilon^{2}-\frac{1}{2(n-1)}\left(x, \sum_{i=1}^{n-1} a_{i}\right)^{2} \\
& +\left(\frac{1}{2} \varepsilon^{2}-\frac{1}{2}\left(x, a_{n}\right)^{2}\right)\left\|\sum_{i=1}^{n-1} a_{i}\right\|+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Since the set $\left\{a_{1}, \ldots a_{n-1}\right\}$ contains at least one pair of non-colinnear points there exists $c<1$ such that $\left\|\sum_{i=1}^{n-1} a_{i}\right\|=c(n-1)$. This gives us the following inequality:

$$
\left(x, \sum_{i=1}^{n-1} a_{i}\right)^{2}<\varepsilon^{2}(n-1)^{2} c^{2}
$$

and we get

$$
F(x) \geq F(0)+\frac{1}{2} \varepsilon^{2}(n-1)\left(1-c^{2}\right)+o\left(\varepsilon^{2}\right)
$$

we can rewrite this as follows:

$$
\frac{F(x)-F(0)}{\varepsilon^{2}} \geq \frac{1}{2}(n-1)\left(1-c^{2}\right)+\frac{o\left(\varepsilon^{2}\right)}{\varepsilon^{2}}
$$

i.e., we obtain that 0 is the point of a local minimum and hence the weak local minimum of the functional $F(x)$. The proof of this implication is complete. Implication (i) \rightarrow (iii) can be proved similarly. The proof of the proposition is complete.

References.

[1] R. Durier, Optimal location and inner products, J.Math. Anal. Appl. 207 (1997) 220-239
[2] G. Chelidze, On a characterization of inner-product spaces, Georgian Math, J. 8 (2001) 231-236
[3] M. Day, Some characterization of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947) 320 -327

